

CBCS SCHEME

ovas tastotate

i) Y = A + B + C

ii) 2 input NAND gate.

OR

Explain the layout Design Rules for MOS process with two metal layers. 4 (06 Marks) a.

b. Draw the stick diagram for the CMOS logic Y = (A + B + C)D and estimate the cell area.

(06 Marks) c. Define scaling. Explain the constant voltage scaling and the effect of scaling on device characteristics. (08 Marks)

Module-3

- Explain with a waveform the propagation Delay, Rise times and Fall Times of a CMOS 5 a. inverter. (08 Marks) Derive the equation of propagation Delay using RC Delay Model for a 1st order system. b.
 - Compute the Elmore Delay for V_{out} in the 2nd order RC system. (06 Marks) c.

USN

1

2

3

18EC72

. ..

(06 Marks)

OR

- 6 a. Explain Parasitic Delay of common gates in Linear Delay Model. (08 Marks)
 - b. Design a circuit to compute F = AB + CD using NAND and NOR by Bubble pushing. (06 Marks)
 - c. Calculate the minimum delay in C to compute F = AB + CD using the circuits with NAND and NOR gates and with AOI gates. Each input can present a maximum of 20 λ of transistor width. The output must derive a load equivalent to 100 λ of transistor width. Choose transistor sizes to achieve this delay. (06 Marks)

Module-4

7 a. Explain Resettable Latches and FlipFlops using CMOs transmission Gate. (10 Marks)
b. Explain the Multistage pass transistor logic driven by two non overlapping clocks. (10 Marks)

OR

8	a.	Explain conventional CMOs flipflops with neat diagrams.	(10 Marks)
	b.	Explain Domino CMOS Logic.	(10 Marks)

Module-5

9	a.	Explain the operation of three transistor dynamic RAM cell.	(10 Marks)
	b.		(10 Marks)

OR

a. Write short notes on :

10

	i) Built in Self Test (BIST)	
	ii) Scan Design Technology	(10 Marks)
b.	Explain briefly logic verification principle with a block diagram.	(10 Marks)

* * * * *